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ABSTRACT 

High Performance Computing Platforms are being used to address operations with complex computational 

requirements or with significant processing time requirements or requirement to process significant amount of data. With the 

advent of low cost Field Programmable Gate Arrays (FPGA‘s), building hardware with parallel architecture for 

computationally intensive applications has now become possible. FPGA‘s offer massive and parallel architectures. This 

paper presents a FPGA based design of parallel architecture which is scalable for hardware implementation of 

computationally intensive applications. The aim of this work is to design a reconfigurable parallel and scalable High 

Performance Computing Platform to accelerate computations. The Cryptanalysis of Advanced Encryption Standard (AES) 

Algorithm is used as a proof of concept. 
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INTRODUCTION 

In recent years, FPGAs have become very popular as coprocessors in high performance computing systems. 

FPGAs achieve much better performance than multi-core CPUs for certain types of computations. Also several 

computationally intensive applications implemented PCs do not utilize all the hardware functionalities provided by the 

standard CPUs. For efficient utilization, increased speed up and reduced power consumption, building special purpose 

hardware is a solution for massively parallel computation. The reliance of the world‘s infrastructure on computer systems, 

and the consequent pervasiveness of the latter, makes their ―security‖ an issue of great importance. With the advent of high 

speed electronic communication there is more information than ever to protect. The constant increase of information 

transmitted electronically has led to an increased reliance on cryptography. The security of symmetric and asymmetric 

ciphers is usually determined by the size of their key-length. Hence when designing a cryptosystem, the key-length must be 

chosen according to the assumed computational capabilities of an attacker. Cryptanalysis of modern cryptographic 

algorithms involves massive and parallel computations. Cryptanalysis is the study of retrieving the plain-text without 

knowledge of the valid key. In the absence of mathematical breakthroughs to a cryptanalytical problem, a promising way to 

tackle these computations is to build special-purpose hardware which will provide better cost-performance ratio. the high 

non-recurring engineering cost for ASIC‘s had put most projects for building special purpose hardware for cryptanalysis out 

of the reach for commercial or research institutions and the performance of software programmed processors is dependent on 

the clock and usually takes larger computation time. However, FPGA‘s offer advantages over traditional software and 

hardware implementations of computationally intensive algorithms. 

In the proposed work, we present a FPGA based design for customized high performance computing platform for 

solving computationally intensive operations. The potential for scalable performance in High Performance Computing 

results in performance improvement by several orders. A system, including all its hardware and software resources, is called 
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scalable if it can scale up (i.e., improve its resources) to accommodate ever-increasing performance and functionality 

demand and/ or scale down (i.e., decrease its resources) to reduce cost. The Cryptanalysis of Advanced Encryption Standard 

(AES) Algorithm using brute force attack is used as a proof of concept. A lot of today‘s most popular parallel computing 

systems with focus on cryptanalysis such as the COPACOBANA [1] consists of dedicated hardware especially built to 

solve a small range of specific problems. In contrast to these systems, our cluster exclusively consists of standardized 

interfaces and components and is freely scalable and configurable. Thus, it is not limited to a small number of problems. 

As the focus of this work is to design a special purpose reconfigurable hardware platform, brute force attack is considered 

for cryptanalysis and not much attention is paid to various cryptanalysis techniques.  

HISTORICAL BACKGROUND 

Cryptanalysis has a historical background. Research on special-purpose hardware for cryptanalysis has a rich and 

illustrious history. In 1938, Polish mathematicians led by Marian Rejewski constructed the Bomba Kryptologiczna          

(or Bomba for short), an electromechanical machine that allowed them to break the German Enigma cipher by exhaustively 

trying all 17,576 rotor positions. This success was expanded by British cryptographers (most notably Alan Turing and 

Gordon Welchman), who designed ingenious cipher-breaking machines enabling the Allied forces to read Enigma 

encrypted messages during World War II [2]. A parallel effort of cryptanalysis of another German cipher, the Lorenz 

SZ40/42, resulted in the construction of Colossus, one of the world‘s first programmable computers. Colossus contained 

1,500 thermionic valves (vacuum tubes) and was able to process 5,000 characters per second [3]. In the 1980s, Pomerance 

et al designed a hardware architecture called Quasimodo for factoring large integers using the quadratic sieve algorithm. 

Quasimodo was actually built but never functioned properly [4]. In 1998, the Electronic Frontier Foundation (EFF) built a 

parallel key search DES hardware cracker called Deep Crack with an overall budget of 210,000 US$ [5]. Deep Crack 

consists of about 1,500 custom chips and needs at most nine days to find a 56-bit DES key by ―brute force.‖ In the late 

1990s, Shamir proposed TWINKLE, an electro-optical device for performing the sieving step of the Number Field Sieve 

(NFS) algorithm [6]. He estimated that a single chip of the size of a 6-inch GaAs wafer would allow one to factor a 512-bit 

number in reasonable time and, as a consequence, break 512-bit RSA keys. TWIRL, a successor of TWINKLE, could 

reduce the total sieving time for 512-bit numbers to less than ten minutes [7]. Even though both TWINKLE and TWIRL 

are purely hypothetical devices that were never built due to technical issues (e.g. too large chip area) and high cost, they 

received considerable attention in the cryptographic community and initiated a slew of follow-up research [8, 9]. Recent 

attempts to implement cryptanalytic devices mainly use FPGAs as underlying hardware platform [10, 11]. In 2006, the 

Cost Optimal Parallel Code Breaker (COPACOBANA) for DES brute-force attack was built for less than US$ 10,000 [1]. 

COPACOBANA, hosting 120 low-cost FPGAs, was successful in breaking some symmetric ciphers with a key size of up 

to 64 bits, e.g. KeeLoq, DES, and A5/1. Thus, with the emergence of newer and powerful devices, continuous efforts are 

being made to make cryptanalysis faster and better. 

AES ALGORITHM 

In November 2001 the Rijndael algorithm was chosen as the Advanced Encryption Standard by the National 

Institute of Standards and Technology (NIST) as the successor of the Data Encryption Standard (DES) [12]. AES is a 

symmetric-key block cipher. AES operates on 128-bit data blocks and accepts 128-, 192- and 256-bit keys. It is an iterative 

cipher, which means that both encryption and decryption consist of multiple iterations of the same basic round function. In 

each round, a different round (or internal) key is being used.  

In AES, the number of cipher rounds depends on the size of the key. It is equal to 10, 12 or 14 for 128-, 192- or 
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256-bit keys, respectively. Based on the internal structure of a round function, AES belongs to the group of SP-network 

block ciphers. The main transformations employed in this cipher are substitutions and permutations and are applied to all 

bits of data block in every round. AES encryption round employs consecutively four main operations: SubBytes, 

ShiftRows, MixColumns, and AddRoundKey. For decryption the inverse version of all these transformations is required. 

These inverse transformations are called InvSubBytes, InvShiftRows, InvMix- Columns, and InvAddRoundKey. 

Cryptanalysis involves finding plaintext from the known ciphertext without the information of the key. Thus for 

cryptanalysis we need to perform decryption for all possible keys. The decryption process is as shown in Figure 1. 

The input to the decryption block is a 128-bit ciphertext. Internally, the AES algorithm‘s operations are performed 

on a two-dimensional array of bytes called the State. The State consists of four rows of bytes, each containing Nb bytes, 

where Nb is the block length divided by 32. In inverse byte substitution transformation the inverse S- box is applied to 

each byte of the State. This is obtained by applying the inverse of the affine transformation followed by taking the 

multiplicative inverse in GF(28). In inverse shift rows transformation the bytes in the last three rows of the State are 

cyclically shifted over different numbers of bytes (offsets). The first row, r = 0, is not shifted. The bottom three rows are 

cyclically shifted by Nb -shift(r, Nb) bytes, where the shift value shift(r, Nb) depends on the row number. The inverse shift 

rows transformation proceeds as follows:  

 

      

In inverse mix column transformation operates on the State column-by-column, treating each column as a four- 

term polynomial. The columns are considered as polynomials over GF (2
8
) and multiplied modulo x 

4 
+ 1 with a fixed 

polynomial a 
-1

(x), given by, 

a 
-1

(x) = {0b}x 
3 
+ {0d}x 

2 
+ {09}x + {0e} 

The above steps are executed in a round loop for round = 1 to Nr-1. The last round has only three steps viz. 

Inverse byte substitution, Inverse shift rows and Add round key. The output of the decryption block is 128-bit plaintext. 

 

Figure 1: AES Decryption Process 
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The AES algorithm takes the Cipher Key, K, and performs a Key Expansion routine to generate a key schedule. 

The Key Expansion generates a total of Nb (Nr + 1) words: the algorithm requires an initial set of Nb words, and each of 

the Nr rounds requires Nb words of key data. The resulting key schedule consists of a linear array of 4-byte words, denoted 

[wi ], with i in the range 0 < i < Nb (Nr + 1).  

In cryptanalysis the captured ciphertext is decrypted with all possible keys. Hence a counter is used to generate 

the Cipher Key, K and its expansion is performed to generate a key schedule. A known-plaintext attack requires the 

adversary to have access to (part of) the plaintext corresponding to the captured ciphertext blocks. In the proposed design 

using brute force technique, the captured ciphertext block is decrypted with all possible keys and the resultant plaintext is 

compared with the know-plaintext. As shown in Figure 2, the Decryption block decrypts the ciphertext and the resultant 

plaintext is compared with the known-plaintext. The key, for which the resultant plaintext matches with the known 

plaintext, is considered to be the correct key. Each Decryption block decrypts the ciphertext with different key. Thus with 

‗n‘ nos. of Decryption blocks ‗n‘ different keys can be searched in one clock cycle thereby reducing the time required for 

key search by a factor of ‗n‘. The number of Decryption blocks ‗n‘ depends on the available logic resources in an FPGA 

device and the logic utilization of one Decryption block. 

 

Figure 2: Cryptanalysis 

SYSTEM ARCHITECTURE 

The proposed system is designed considering the following criteria‘s: i) Computationally intensive operations 

which have independent solution space can be parallelized. ii) All concurrent instances have a limited requirement to 

communicate with each other. iii) The demand for data transfer between host and computation elements is low as 

computations heavily dominate communication. iv) Most of the algorithms and their corresponding hardware nodes 

demand for very little local memory, which can be provided by the on-chip RAM of an FGPA. v) Since the cryptanalytical 

applications demand for plenty of computing power, a hardware architecture that is scalable and uses standard of the shelf 

commercial components is an ideal solution. 

The idea is to instantiate multiple instances of the algorithm simultaneously, so that the solution space is explored 

at a fast pace and the solution is found at a fraction of time required by a sequential process. As seen in Figure 3, the 

system is architected as a single master and multiple slave system. It provides a USB interface to the external world and its 

functions are controlled using a standard computer.  
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Figure 3: System Block Diagram 

The basic hardware components of the system are Controller Card, Computation Elements and host PC. The 

Controller card and the Computation Elements are interfaced using a Backplane Chassis. A Power Supply Card is used 

generate the required voltage levels for the Controller Card and the Computation Elements. Virtex 6 FPGA 

(XC6VLX240T-1FFG1156C) is used as the target device in Controller Card and the Computational Elements. The detailed 

functionality of each block is explained as follows: 

Controller Card 

The Controller Card controls the data transfer between the host PC and the Computational Elements. This is 

acting as a master in the system. On the host side it communicates with the host computer to receive commands, receive 

Computing Element FPGA configuration files and send back computed results. 

On the computing elements side it configures the individual Computing Element FPGAs with the required 

algorithms, passes Data to FPGAs and polls FPGAs for recent results. The detailed system block diagram for Controller 

Card is as shown in Figure 4. the Controller Card includes standard interfaces.  

This card is mounted in one of the slot of the backplane chassis. The power supply circuit takes the DC voltage 

from the main Power Supply Card and converts it to the required voltage level i.e. 3.3V. The Clock Circuit provides the 

system clock. The Reset circuit is the master reset for the system.  

The USB interface is used to communicate with the host PC. The DDR2-SDRAM is interfaced and reserved for 

future use. Switches are provided as handshaking signals. LEDs are interfaced to facilitate visual indications for testing, 

debugging and functional use.  

The configuration files required to program the FPGA are stored in PROM. VPX connector is used for 

Interconnection Bus interface and Rocket IO protocol is used for transfer of data between controller and slave card. It 

offers a data rate up to 6.5 Gbps. As computations heavily dominate communication, any other communication protocol 

with less data rate can also be used.  
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Figure 4: System Block Diagram for Controller Card 

Slave Card 

Figure 5 gives the detailed architecture of the Slave Card. The Computation Element forms the slave card. Up to 

20 slave cards can be connected in the backplane chassis. All these Computational Elements are connected to a common 

bus and each element has a fixed hardwired address. Each computing element will house six Virtex6 FPGAs. The 

computing elements are configured with multiple instances of the same algorithm and search for a key in their allocated 

solution space. The algorithms inside the computational elements are designed such that more than one solution can be 

searched in a single cycle. Each FPGA is assigned a unique address using address decoder circuit and has the same 

configuration file.  

 

Figure 5: Slave Card 

All the FPGAs on all the Slave Cards are connected in a daisy chain and programmed using a sing JTAG 

connector and configuration file. Also the daisy chain is designed such that even if one of the slave card is removed, the 

slot will be bypassed and the chain will not break.  

Power Supply Card 

The power supply card will convert the 230V/50Hz AC mains to +5V - +12V DC using AC – DC converter, to be 

used as a source for DC – DC converters used for generating required voltages for each slave card. Separate Connectors for 

power supply for controller card and individual slave cards will be used. 
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Backplane Chassis 

 

Figure 6: Backplane Chassis 

The backplane hosts the controller card and the slave cards. All modules are connected by a 64-bit data bus and a 

16-bit address bus. The power supply and configuration bit files are routed to all the FPGAs through the backplane bus. 

Figure 6 shows the structure of the backplane chassis. 

Host PC 

The host PC is a latest technology standard computer. It is used to configure and control the FPGA cards. It runs 

the customized software tools to configure the FPGA cards. 

IMPLEMENTATION OF AES CRYPTANALYSIS 

We first implemented the design with one instance of the key search engine on Xilinx Xc3s5000-4fg900 device. 

Two instances of the design could be fit in a single FPGA chip. The results in terms of area and number of keys search per 

second are compared with [8] and it is found that our design gives better result. The same design is then implemented on 

Xilinx Xc6vlx240t-1ff1156c device. The device utilization for single instance of the design is as shown in Table 1. As the 

solution space is independent, we then created multiple instance and instantiated them simultaneously. Eight instances of 

the design could be fit in a single FPGA chip such that the time required for key search is reduced by eight. The device 

utilization for the design with eight instances is as shown in Table 1. The results in terms of number of keys search per 

second are compared with [13]. and it is found that our design with multiple instances gives better result.  

Table 1: Comparative Results 

 

Single 

Instance 

of AES 

Single 

Instance of 

AES 

Eight 

Instances of 

AES 

Results 

from [13] 

Target Device 
Xc3s5000-

4fg900 

Xc6vlx 

240t-1ff1156c 

Xc6vlx 

240t-1ff1156c 

Xc3s5000-

4fg900 

Number of Slice Registers 92% 1% 12% 80.98 % 

Number of Slice LUTs 90% 9% 78% --- 

Min period 3.84 ns 4.010 ns 4.064 ns 3.79 ns 

Max Frequen-cy 260.4 MHz 249.351 MHz 246.06 MHz 263.16 MHz 

Keys/Sec/ FPGA 520x10
6
 244x10

6
 1.97x10

9
 526x10

6
 

 

CONCLUSIONS 

In this work we have presented the design for FPGA based scalable architecture for computationally intensive 

applications which can reconfigured run time to adapt to the required algorithm. To test the scalability and of the hardware, 

the designs for cryptanalysis of AES algorithm with single and multiple instances are implemented. The experimental 

results show that, by creating multiple instances of the design in a single FPGA, the time required for key search can be 

reduced by ‗n‘ fold. Also we can scale the hardware architecture with multiple FPGAs in a single board to increase the 

number of computations per second.  
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